111 research outputs found

    Wafer-scale integration of graphene for waveguide-integrated optoelectronics

    Get PDF
    As the focus of graphene research shifts from fundamental physics to applications, the scalability and reproducibility of experimental results become ever more important. Graphene has been proposed as an enabling material for the continuing growth of the telecommunications industry due to its applications in optoelectronics; however, the extent of its adoption will depend on the possibility to maintain the high intrinsic quality of graphene when processing it using the industry-standard approaches. We look at the challenges of scalable graphene integration and the opportunities presented by the recent technological advances

    The Influence of Graphene Curvature on Hydrogen Adsorption: Towards Hydrogen Storage Devices

    Full text link
    The ability of atomic hydrogen to chemisorb on graphene makes the latter a promising material for hydrogen storage. Based on scanning tunneling microscopy techniques, we report on site-selective adsorption of atomic hydrogen on convexly curved regions of monolayer graphene grown on SiC(0001). This system exhibits an intrinsic curvature owing to the interaction with the substrate. We show that at low coverage hydrogen is found on convex areas of the graphene lattice. No hydrogen is detected on concave regions. These findings are in agreement with theoretical models which suggest that both binding energy and adsorption barrier can be tuned by controlling the local curvature of the graphene lattice. This curvature-dependence combined with the known graphene flexibility may be exploited for storage and controlled release of hydrogen at room temperature making it a valuable candidate for the implementation of hydrogen-storage devices

    Stretching graphene using polymeric micro-muscles

    Full text link
    The control of strain in two-dimensional materials opens exciting perspectives for the engineering of their electronic properties. While this expectation has been validated by artificial-lattice studies, it remains elusive in the case of atomic lattices. Remarkable results were obtained on nanobubbles and nano-wrinkles, or using scanning probes; microscale strain devices were implemented exploiting deformable substrates or external loads. These devices lack, however, the flexibility required to fully control and investigate arbitrary strain profiles. Here, we demonstrate a novel approach making it possible to induce strain in graphene using polymeric micrometric artificial muscles (MAMs) that contract in a controllable and reversible way under an electronic stimulus. Our method exploits the mechanical response of poly-methyl-methacrylate (PMMA) to electron-beam irradiation. Inhomogeneous anisotropic strain and out-of-plane deformation are demonstrated and studied by Raman, scanning-electron and atomic-force microscopy. These can all be easily combined with the present device architecture. The flexibility of the present method opens new opportunities for the investigation of strain and nanomechanics in two-dimensional materials

    erratum to superlubricity of epitaxial monolayer ws2 on graphene

    Get PDF
    The article Superlubricity of epitaxial monolayer WS2 on graphene, written by Holger Buch, Antonio Rossi, Stiven Forti, Domenica Convertino, Valentina Tozzini, and Camilla Coletti, was originally published electronically on the publisher's internet portal (currently SpringerLink) on June 18th 2018 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed in August 2018 to © The Author(s) 2018 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The original article has been corrected

    Anisotropic straining of graphene using micropatterned SiN membranes

    Get PDF
    We use micro-Raman spectroscopy to study strain profiles in graphene monolayers suspended over SiN membranes micropatterned with holes of non-circular geometry. We show that a uniform differential pressure load ΔP\Delta P over elliptical regions of free-standing graphene yields measurable deviations from hydrostatic strain conventionally observed in radially-symmetric microbubbles. The top hydrostatic strain εˉ\bar{\varepsilon} we observe is estimated to be ≈0.7%\approx0.7\% for ΔP=1 bar\Delta P = 1\,{\rm bar} in graphene clamped to elliptical SiN holes with axis 4040 and 20 μm20\,{\rm \mu m}. In the same configuration, we report a G±G_\pm splitting of 10 cm−110\,{\rm cm^{-1}} which is in good agreement with the calculated anisotropy Δε≈0.6%\Delta\varepsilon \approx 0.6\% for our device geometry. Our results are consistent with the most recent reports on the Gr\"uneisen parameters. Perspectives for the achievement of arbitrary strain configurations by designing suitable SiN holes and boundary clamping conditions are discussed.Comment: 8 pages, 6 figure (including SI
    • …
    corecore